Fabrication of nanozeolite-Y/chitosan composite based on rice husks for efficient adsorption of methylene blue dye: kinetic and thermodynamic studies

Author:

Braish Amany G.,Hassan Asaad F.,El-Essawy Shimaa A.,El-Tahawy Mohsen M.T.

Abstract

AbstractIn this work, three solid adsorbents were synthesized, namely, nanozeolite-Y prepared from rice husks ash by a sol-gel method as a green biosource (ZN), chitosan as a cationic biopolymer (CS), and nanozeolite-Y/chitosan composite (CSZ). An eco-friendly composite that consists of chitosan and nanozeolite-Y was used to combine the advantages of nanoparticles with biopolymers two materials to increase the removal % of methylene blue dye. All the synthetized solid adsorbents were investigated using TGA, nitrogen adsorption, SEM, TEM, FTIR, XRD, and zeta potential. The results showed that CSZ particles had a high specific surface area (432.3 m2/g), mesoporosity (with an average pore diameter of 2.59 nm), a smaller TEM particle size (between 28.6 and 60.7 nm), a lot of chemical functional groups, and high thermal stability. CSZ exhibited the maximum adsorption capacity (141.04 mg/g) towards methylene blue. The adsorption nature of methylene blue onto CS and CSZ is endothermic, spontaneous, and a physical adsorption process, while it is exothermic, nonspontaneous, physical adsorption process in the case of ZN, as confirmed by thermodynamic results. Pseudo-second order, Elovich, Dubinin-Radushkevich, Freundlich, Langmuir, Temkin, and adsorption models all fit the MB adsorption well, with correlation coefficients reaching about 0.9997. Nitric acid was found to be the best desorbing agent, with a desorption efficiency of about 99%.

Funder

Damanhour University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3