Design and analysis of data link impersonation attack for wired LAN application layer services

Author:

ElShafee Ahmed,El-Shafai Walid

Abstract

AbstractImpersonation attack, also known as MAC spoofing, is widespread in wireless local area networks. Under this attack, the senders cannot control the device that listens to their traffic. On the other hand, the physical layer of the wired local area network is more secure, where the traffic is transmitted through cables and network nodes to the intended receivers. Each network node builds its MAC address table, which states stations that are physically connected (directly or indirectly) to each port, so traffic encryption is an unnecessary process. This paper discusses the design and testing of a new attack called a data link impersonation attack. In this attack, the attacker is considered a hardware intruder that deceives data link layer apparatus like the switches of layer two or three, taking advantage of a vulnerability in the MAC address table of the network nodes. That leads the network switches to send all the network traffic to the intruder instead of the real network device (usually a network service provider under attack). Intruder accepts all incoming requests/traffic from the service requester. If the intruder does not reply to the received requests sent by service requesters, it acts as a black hole intruder, simply causing a denial-of-service attack. If an intruder responds to these requests with fake replies to steal information from service requesters, it acts as a white hole intruder. During the attack, the intruder is transparent for the whole network and does not affect overall network performance and generally the network services, so it is so hard to be discovered by the network software running the network apparatus. Different scenarios were tested using different network simulators and physical networks (CISCO L2/L3 switches). It is demonstrated that the attacker is successfully denied the service/application under attack. The proposed attack reveals the new vulnerability of the wired local area network and opens the door for network scientists to enhance network software that runs the network apparatus immune against the proposed attack.

Funder

Ahram Canadian University

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3