Seamless Connections: Harnessing Machine Learning for MAC Optimization in Home Area Networks

Author:

Khan Bilal Muhammad1,Kadri Muhammad Bilal2ORCID

Affiliation:

1. Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan

2. Department of Computer Science, College of Computer Science and Information Systems, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

The latest technologies and communication protocols are arousing a keen interest in automation, in which the field of home area networks is the most prominent area to work upon toward solving the issues and challenges faced by wireless home area networks regarding adaptability, reliability, cost, throughput, efficiency, and scalability. However, managing the immense number of communication devices on the premises of a smart home is a challenging task. Moreover, the Internet of Things (IoT) is an emerging global trend with billions of smart devices to be connected in the near future resulting in a huge amount of diversified data. The continuous expansion of the IoT network causes complications and vulnerabilities due to its dynamic nature and heterogeneous traffic. In the applications of IoT, the wireless sensor network (WSN) plays a major role, and to take benefits from WSN, medium access control (MAC) is the primary protocol to optimize, which helps in allocating resources to a huge number of devices in the smart home environment. Furthermore, artificial intelligence is highly demanded to enhance the efficiency of existing systems and IoT applications. Therefore, the purpose of this research paper is to achieve an optimized medium access control protocol through machine learning. The machine learning classifier, e.g., random forest (RF) and linear regression model, is adopted for predicting the features of home area networks. The proposed technique is helpful and could overcome the demerits of existing protocols in relation to scalability, throughput, access delay, and reliability and help in achieving an autonomous home area network (HAN).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3