An enhanced ride sharing model based on human characteristics, machine learning recommender system, and user threshold time
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
http://link.springer.com/content/pdf/10.1007/s12652-020-02848-5.pdf
Reference44 articles.
1. Ahn S, Fessler JA (2003) Standard errors of mean, variance, and standard deviation estimators. The University of Michigan, EECS Department, pp 1–2
2. Apte JS, Messier KP, Gani S, Brauer M, Kirchstetter TW, Lunden MM, Marshall JD, Portier CJ, Vermeulen RC, Hamburg SP (2017) High-resolution air pollution mapping with google street view cars: exploiting big data. Enviro Sci Technol 51(12):6999–7008
3. Boldrini C, Bruno R. and Conti M. (2016). Characterising demand and usage patterns in a large station-based car sharing system. In: IEEE conference on computer communications workshops (INFOCOM WKSHPS)’, pp. 572–577
4. Campana MG, Delmastro F. and Bruno R. (2016). A machine-learned ranking algorithm for dynamic and personalised car pooling services. In: IEEE 19th international conference on intelligent transportation systems (ITSC)’, pp. 1856–1862
5. Carrese S, Giacchetti T, Patella SM. and Petrelli M. (2017) . Real time ridesharing: Understanding user behavior and policies impact: Carpooling service case study in Lazio Region, Italy. In: IEEE 5th international conference on models and technologies for intelligent transportation systems (MT-ITS)’, pp. 721–726
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A shared ride matching approach to low-carbon and electrified ridesplitting;Journal of Cleaner Production;2024-08
2. A Survey of Machine Learning-Based Ride-Hailing Planning;IEEE Transactions on Intelligent Transportation Systems;2024-06
3. Guiding Urban Decision-Making: A Study on Recommender Systems in Smart Cities;Electronics;2024-05-31
4. Enabling Configurable Workflows in Smart Environments with Knowledge-based Process Fragment Reuse;Journal of Grid Computing;2024-05-03
5. Cross‐network service recommendation in smart cities;Concurrency and Computation: Practice and Experience;2024-03-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3