Cross‐network service recommendation in smart cities

Author:

Mezni Haithem1,Sellami Mokhtar2ORCID,Al‐Rasheed Amal3,Elmannai Hela4

Affiliation:

1. SMART Research Lab Jendouba University Jendouba Tunisia

2. Department of Computer Sciences University of Jendouba Jendouba Tunisia

3. Department of Information Systems, College of Computer and Information Sciences Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia

4. Department of Information Technology, College of Computer and Information Sciences Princess Nourah Bnt Abdulrahman University Riyadh Saudi Arabia

Abstract

SummaryNowadays, Internet of Things, artificial intelligence, cloud computing, and other revolutionary technologies (e.g., edge and fog computing) have become the pillar of smart cities. These latter make users' lives easier, thanks to a wide variety of smart services offered in different dimensions (e.g., smart living, smart mobility, smart economy, smart governance). However, the rapid adoption of smart services by users and the full servicelization of several cities around the world is faced with two major issues: the lack of knowledge regarding smart services' capacities (e.g., features, contextual requirements, pricing models, privacy policies, provisioning terms, etc.), and the lack of unified rating and quantification of smart services' QoS behavior. Indeed, interested users often exploit traditional search tools (e.g., Web search engines, social networks) to find and rate the needed services. This behavior has scattered the smart services' usage data (e.g., users contexts, ratings) across multiple providers platforms, which makes the search task beyond the capacity of users and, even, other service providers. Although recommender systems are a natural solution to exempt users from exploring the huge space of the offered smart services, current recommendation approaches for smart city environments are unable to deliver correct recommendations. In fact, they have been initially designed to single‐network settings (a single service repository), while smart services' consumers often are involved in multiple provider platforms. To the best of our knowledge, there exists no approach that treated smart service recommendation across multiple information networks. Therefore, the goal of this paper is to propose a cross‐network recommender system for smart cities. We first model the multiplex network of smart services' providers as a multirelational fuzzy lattice family thanks to fuzzy relational concept analysis (fuzzy RCA), which is a powerful mathematical method for data analysis and clustering. We also use the concept of anchor users to connect providers networks via the users involved in more than one provider platform. Guided by anchors' cross‐network relations, we compute the similarity between users and we define algorithms for exploring the smart services' information network, i.e. lattice family. Extensive experiments have proved the effectiveness of cross‐network recommendation and the quality of produced recommendations, compared to state‐of‐the‐art single‐network recommendation.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3