Robust retinal blood vessel segmentation using convolutional neural network and support vector machine
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-019-01559-w.pdf
Reference32 articles.
1. Adalarasan R, Malathi R (2018) Automatic detection of blood vessels in digital retinal images using soft computing technique. Mater Today Proc 5:1950–1959
2. Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable COSFIRE filters for vessel delineation with application to retinal images. Med Image Anal 19:46–57
3. Barkana BD, Saricicek I, Yildirim B (2017) Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl-Based Syst 118:165–176
4. Biswal B, Pooja T, Subrahmanyam NB (2017) Robust retinal blood vessel segmentation using line detectors with multiple masks. IET Image Proc 12:389–399
5. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619
Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Decoding the Eye: AI-Driven Diabetic Retinopathy Classification for Precision Healthcare;2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S);2024-06-08
2. Applying machine learning models on blockchain platform selection;International Journal of System Assurance Engineering and Management;2024-05-25
3. MULTI-head self-attention-based recurrent neural network with dwarf mongoose optimization algorithm-espoused QRS detector design;Signal, Image and Video Processing;2024-04-18
4. System assurance guided artificial intelligence vocal training system considering speech spectrum visualization;International Journal of System Assurance Engineering and Management;2024-04-03
5. Retinal blood vessel segmentation using a deep learning method based on modified U-NET model;Multimedia Tools and Applications;2024-03-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3