Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Aguirre-Ramos H, Avina-Cervantes JG, Cruz-Aceves I et al (2018) Blood vessel segmentation in retinal fundus images using Gabor filters, fractional derivatives, and expectation maximization. Appl Math Comput 339:568–587. https://doi.org/10.1016/j.amc.2018.07.057
2. Aguirre-Ramos H, Avina-Cervantes JG, Cruz-Aceves I et al (2018) Blood vessel segmentation in retinal fundus images using gabor filters, fractional derivatives, and expectation maximization. Appl Math Comput 339:568–587
3. Ahmed S, Srinivasu PN, Alhumam A et al (2022) Aal and internet of medical things for monitoring type-2 diabetic patients. Diagnostics 12(11). https://www.mdpi.com/2075-4418/12/11/2739
4. Atli İ, Gedik OS (2021) Sine-net: a fully convolutional deep learning architecture for retinal blood vessel segmentation. Eng Sci Technol Int J 24(2):271–283
5. Azzopardi G, Strisciuglio N, Vento M et al (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced Retinal Vessel Segmentation Using U-Net Framework;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15