Collaborative filtering recommendation system based on improved Jaccard similarity
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-023-04647-0.pdf
Reference33 articles.
1. Ayub M, Ghazanfar MA, Mehmood Z, Saba T, Alharbey R, Munshi AM, Alrige MA (2019) Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems. PloS One 14(8):e0220129
2. Ayub M, Ghazanfar MA, Khan T, Saleem A (2020) An effective model for Jaccard coefficient to increase the performance of collaborative filtering. Arab J Sci Eng 45(12):9997–10017
3. Ayub M, Ghazanfar MA, Mehmood Z, Alyoubi KH, Alfakeeh AS (2020) Unifying user similarity and social trust to generate powerful recommendations for smart cities using collaborating filtering-based recommender systems. Soft Comput 24:11,071-11,094
4. Bag S, Kumar SK, Tiwari MK (2019) An efficient recommendation generation using relevant Jaccard similarity. Inform Sci 483:53–64
5. Batmaz Z, Yurekli A, Bilge A, Kaleli C (2019) A review on deep learning for recommender systems: challenges and remedies. Artif Intell Rev 52(1):1–37
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A new neighbourhood-based diffusion algorithm for personalized recommendation;Knowledge and Information Systems;2024-05-16
2. An improved sequential recommendation model based on spatial self-attention mechanism and meta learning;Multimedia Tools and Applications;2024-01-03
3. Cliques of Graph Convolutional Networks for Recommendation;IEEE Access;2024
4. Matrix Game Method Based on Z-Spherical Hesitant Fuzzy Linguistic;Advances in Applied Mathematics;2024
5. An Implementation of Recipe Recommendation System Based on Ingredients Availability Using Content-based and Collaborative Filtering;2023 International Conference on Converging Technology in Electrical and Information Engineering (ICCTEIE);2023-10-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3