Benefits and risks of using bacterial- and plant-produced nano-silver for Japanese quail hatching-egg sanitation

Author:

Hamouda Nagwa H.,Saleh W. D.,Nasr N. F.,El Sabry M. I.

Abstract

AbstractThis research compared how bacterial-, plant-produced silver nanoparticles (Ag-NPs) and TH4 affected the eggshells microbial load and quail chicks' liver structure, embryonic mortality, and features related to hatchability. Ag-NPs were sensitized by bacterial and plant methods, and then identified by UV–visible spectroscopy, TEM, and FTIR spectroscopy. B-Ag-NPs were found in spherical shapes in size ranging from 7.09 to 18.1 nm versus multi-shape with size range of 25.0–78.1 nm for P-Ag-NPs. A total number of 624 eggs (in three equal groups) of Japanese quail flock were sprayed with TH4 as control, B-Ag-NPs and P-Ag-NPs. Thereafter, three eggs were sampled randomly from each group for determining important microbial groups. The remaining eggs were incubated according to the recommended incubation conditions. On the day of hatching, the percentages of hatchability and embryonic mortality were measured. Besides, five chicks from each treatment were slaughtered and the livers were utilized for ICP and histological tests. The effects of all three treatments on the microbial count in eggshells were comparable, according to the results. In addition, there was no negative effect on either hatchability percentage or embryonic mortality rate. The liver structure from both B-Ag-NPs and P-Ag-NPs treatments exhibited severe and moderate degeneration of hepatocytes, which may indicate possible hazardous effects of using nanoparticles. Using TH4 did not cause liver structure abnormality. In conclusion, using Ag-NPs for sanitizing hatching eggs effectively reduces the eggshell microbial count without affecting the hatchability percentage. Nevertheless, histological changes are appropriate to be considered as a safety parameter in Ag-NPs applications.

Funder

The Science, Technology & Innovation Funding Authority

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,General Medicine,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3