Network-based piecewise linear regression for QSAR modelling

Author:

Cardoso-Silva Jonathan,Papageorgiou Lazaros G.,Tsoka SophiaORCID

Abstract

Abstract Quantitative Structure-Activity Relationship (QSAR) models are critical in various areas of drug discovery, for example in lead optimisation and virtual screening. Recently, the need for models that are not only predictive but also interpretable has been highlighted. In this paper, a new methodology is proposed to build interpretable QSAR models by combining elements of network analysis and piecewise linear regression. The algorithm presented, modSAR, splits data using a two-step procedure. First, compounds associated with a common target are represented as a network in terms of their structural similarity, revealing modules of similar chemical properties. Second, each module is subdivided into subsets (regions), each of which is modelled by an independent linear equation. Comparative analysis of QSAR models across five data sets of protein inhibitors obtained from ChEMBL is reported and it is shown that modSAR offers similar predictive accuracy to popular algorithms, such as Random Forest and Support Vector Machine. Moreover, we show that models built by modSAR are interpretatable, capable of evaluating the applicability domain of the compounds and serve well tasks such as virtual screening and the development of new drug leads.

Funder

CAPES

Leverhulme Trust

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Computer Science Applications,Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3