Potential use of nanoparticles produced from byproducts of drinking water industry in stabilizing arsenic in alkaline-contaminated soils

Author:

Moharem Mohamed L.,Hamadeen Hala M.,Mesalem Mohamed O.,Elkhatib Elsayed A.

Abstract

AbstractThe stabilization of heavy metals in soils is considered a cost-effective and environmentally sustainable remediation approach. In the current study, the applicability of water treatment residual nanoparticles (nWTRs) with the particle size ranged from 45 to 96 nm was evaluated for its efficacy in reducing arsenic mobility in clayey and sandy contaminated alkaline soils. Sorption isotherms, kinetics, speciation and fractionation studies were performed. Sorption equilibrium and kinetics studies revealed that As sorption by nWTRs-amended soils followed Langmuir and second-order/power function models. The maximum As sorption capacity (qmax) of Langmuir increased up to 21- and 15-folds in clayey and sandy soils, respectively, as a result of nWTRs application at 0.3% rate. A drastic reduction in non-residual (NORS) As fraction from 80.2 and 51.49% to 11.25 and 14.42% for clayey and sandy soils, respectively, at 0.3% nWTRs application rate was observed, whereas residual (RS) As fraction in both studied soils strongly increased following nWTRs application. The decline in percentage of As mobile form (arsenious acid) in both soils after nWTRs application indicated the strong effect of nWTRs on As immobilization in contaminated soils. Furthermore, Fourier transmission infrared spectroscopy analysis suggested reaction mechanisms between As and the surfaces of amorphous Fe and Al oxides of nWTRs through OH groups. This study highlights the effective management approach of using nWTRs as soil amendment to stabilize As in contaminated alkaline soils.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3