Novel nano-fertilizers derived from drinking water industry waste for sustained release of macronutrients: performance, kinetics and sorption mechanisms

Author:

Elsabagh Samira S.,Elkhatib Elsayed A.,Rashad Mohamed

Abstract

AbstractNanotechnology has emerged as a promising approach for the controlled release of nutrients, particularly phosphorus and potassium. These essential plant nutrients are often applied in excess, leading to environmental pollution and loss of efficiency in crop production. Innovative economic and highly efficient fertilizers are urgently needed to achieve the targeted crop production worldwide in the presence of limited land and water resources. Therefore, in this study, novel, eco-friendly, cost-effective and enhanced efficiency nano-enabled fertilizers, NEF (nWTF1and nWTF2) were synthesized by impregnation of nanostructured water treatment residuals (nWTR) with (KH2PO4 + MgO) at 1:1 and 3:1 (w/w) ratios respectively using a planetary ball mill. The nWTR, nWTF1 and nWTF2 were extensively characterized. The water retention behavior and the sustained release of nutrients from the fabricated nano-enabled fertilizers (nWTF1 and nWTF2) in distilled water and sandy soil were investigated and monitored over time. The water retention capacity of the soil treated with nWTF2 after 26 days was 9.3 times higher than that of soil treated with conventional fertilizer. In addition, the nWTF2 exhibited lower release rates of P, K and Mg nutrients for longer release periods in comparison with the conventional fertilizers. This is a significant advantage over traditional fertilizers, which release nutrients quickly and can lead to leaching and nutrient loss. The main interaction mechanisms of PO4–K–Mg ions with nWTR surface were suggested. The results of the kinetics study revealed that power function was the best suitable model to describe the kinetics of P, K and Mg release data from NEF in water and soil. The produced NEF were applied to Zea maize plants and compared to commercial chemical fertilizer control plants. The obtained results revealed that the nano-enabled fertilizers (nWTF1 and nWTF2) significantly promoted growth, and P content compared with the commercial chemical fertilizer treated plants. The present work demonstrated the power of nano enabled fertilizers as efficient and sustained release nano-fertilizers for sustainable agriculture and pollution free environment.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3