Chemical and isotopic composition of CO2-rich magnesium–sodium–bicarbonate–sulphate-type mineral waters from volcanoclastic aquifer in Rogaška Slatina, Slovenia

Author:

Rman NinaORCID,Szőcs Teodóra,Palcsu László,Lapanje Andrej

Abstract

AbstractBottled natural mineral waters from an andesitic aquifer in Slovenia are enriched in magnesium (1.1 g/l), sulphate (2.2 g/l) and dissolved inorganic carbon (204 g/l). We analysed major ions, trace elements, tritium activity, 14C, δ18OH2O, δ2HH2O,δ13CDIC, gas composition and noble gases in six wells. In addition, 87Sr//86Sr, δ34SSO4 and δ11B were analysed here for the first time. Stable isotopes with δ18O = −11.97 to −10.30‰ and δ2H = −77.3 to −63.8 confirm meteoric origin. CO2 degassing is evident at three wells, causing the oxygen shift of about −1.3‰. Tritium activity was detectable only in the shallowest well, where the freshwater component was dated to the 1960s. δ13CDIC in five waters is −1.78 to + 1.33‰, typical of carbonate dissolution. Radiocarbon is low, 1.03–5.16 pMC. Chemical correction with bicarbonate concentration and δ13C correction methods gave best mean residence times, slightly longer than previously published. Sulphate has δ34S 26.6–28.9‰ and δ18O 8.9–11.1‰ due to dissolution of evaporites in carbonate rocks. Boron at concentrations of 1.2–6.1 mg/l has two origins: δ11B = 11.3–16.4‰ from hydrothermal alteration and δ11B = 26.6–31.7‰ from carbonate dissolution. Strontium at concentrations of 0.5–22.0 mg/l has 87Sr//86Sr, indicating three sources: 0.7106 for Miocene clastic rocks, 0.7082 for Triassic carbonates and 0.7070 for Lower Oligocene andesitic rocks. CO2 represents the majority of the dissolved (> 98.84 vol%) and separated gas (> 95.23 vol%). Methane is only found in two wells with a max. of 0.30 vol%. All waters show excess helium and 16–97% of mantle-derived helium. Since all show subsurface degassing, the paleo-infiltration temperature could not be calculated.

Funder

Tempus Public Foundation

Javna Agencija za Raziskovalno Dejavnost RS

European Union and the State of Hungary

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3