Determinants and predictors for the long-term disease burden of intracranial meningioma patients

Author:

Zamanipoor Najafabadi Amir H.ORCID,van der Meer Pim B.,Boele Florien W.,Taphoorn Martin J. B.,Klein Martin,Peerdeman Saskia M.,van Furth Wouter R.,Dirven Linda,Boele Florien W.,Dirven Linda,van Furth Wouter R.,Klein Martin,Koekkoek Johan,Lagerwaard Frank,van der Meer Pim B.,Peerdeman Saskia M.,Taphoorn Martin J. B.,Zamanipoor Najafabadi Amir H.,Moojen Wouter A.,Reijneveld Jaap C.,

Abstract

Abstract Introduction Meningioma is a heterogeneous disease and patients may suffer from long-term tumor- and treatment-related sequelae. To help identify patients at risk for these late effects, we first assessed variables associated with impaired long-term health-related quality of life (HRQoL) and impaired neurocognitive function on group level (i.e. determinants). Next, prediction models were developed to predict the risk for long-term neurocognitive or HRQoL impairment on individual patient-level. Methods Secondary data analysis of a cross-sectional multicenter study with intracranial WHO grade I/II meningioma patients, in which HRQoL (Short-Form 36) and neurocognitive functioning (standardized test battery) were assessed. Multivariable regression models were used to assess determinants for these outcomes corrected for confounders, and to build prediction models, evaluated with C-statistics. Results Data from 190 patients were analyzed (median 9 years after intervention). Main determinants for poor HRQoL or impaired neurocognitive function were patients’ sociodemographic characteristics, surgical complications, reoperation, radiotherapy, presence of edema, and a larger tumor diameter on last MRI. Prediction models with a moderate/good ability to discriminate between individual patients with and without impaired HRQoL (C-statistic 0.73, 95% CI 0.65 to 0.81) and neurocognitive function (C-statistic 0.78, 95%CI 0.70 to 0.85) were built. Not all predictors (e.g. tumor location) within these models were also determinants. Conclusions The identified determinants help clinicians to better understand long-term meningioma disease burden. Prediction models can help early identification of individual patients at risk for long-term neurocognitive or HRQoL impairment, facilitating tailored provision of information and allocation of scarce supportive care services to those most likely to benefit.

Funder

Leiden University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Clinical Neurology,Neurology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3