Comparative analysis of deep and machine learning approaches for daily carbon monoxide pollutant concentration estimation
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering
Link
https://link.springer.com/content/pdf/10.1007/s13762-022-04702-x.pdf
Reference51 articles.
1. Abderrahim H, Chellali MR, Hamou A (2015) Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks. Environ Sci Pollut Res 23(2):1634–1641. https://doi.org/10.1007/s11356-015-5406-6
2. Abirami S, Chitra P, Madhumitha R, Kesavan SR (2020) Hybrid spatio-temporal deep learning framework for particulate matter (PM2.5) concentration forecasting, In: 2020 International conference on innovative trends in information technology (ICITIIT), IEEE, pp 1–6
3. Anonymous (2020) Clean air action plan for Sakarya. Minist. Environ. urbanity Turkish Republic, Sak. Prov. Dir. Environ. urbanity
4. Apaydin H, Feizi H, Sattari MT (2020) Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. https://doi.org/10.3390/w12051500
5. Bai Y, Zeng B, Li C, Zhang J (2019) An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting. Chemosphere 222:286–294
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced urban PM2.5 prediction: Applying quadtree division and time-series transformer with WRF-chem;Atmospheric Environment;2024-11
2. Evaluation of Deep Learning Models for Predicting the Concentration of Air Pollutants in Urban Environments;Sustainability;2024-08-17
3. Transfer learning based solution for air quality prediction in smart cities using multimodal data;International Journal of Environmental Science and Technology;2024-05-26
4. Using Machine Learning Methods Combined with Vegetation Indices and Growth Indicators to Predict Seed Yield of Bromus inermis;Plants;2024-03-08
5. A novel ensemble approach for road traffic carbon emission prediction: a case in Canada;Environment, Development and Sustainability;2024-02-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3