1. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D. (2016). A deep learning approach for object recognition with nao soccer robots. In Robot World Cup, pp. 392–403. Springer.
2. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K. (2016). End to end learning for self-driving cars.
3. Carmichael, Z., Langroudi, H.F., Khazanov, C., Lillie, J., Gustafson, J.L., Kudithipudi, D. (2019). Performance-efficiency trade-off of low-precision numerical formats in deep neural networks. In Proceedings of the conference for next generation arithmetic 2019.
4. Codevilla, F., Muller, M., Lopez, A., Koltun, V., Dosovitskiy, A. (2018). End-to-end driving via conditional imitation learning. In 2018 IEEE international conference on robotics and automation (ICRA).
5. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del Solar, J. (2017). Using convolutional neural networks in robots with limited computational resources: Detecting nao robots while playing soccer. arXiv preprintarXiv:1706.06702.