Green anionic polymerization of vinyl acetate using Maghnite-Na+ (Algerian MMT): synthesis characterization and reactional mechanism

Author:

Cherifi Badia Imene,Belbachir Mohammed,Rahmouni Abdelkader

Abstract

AbstractIn this work, the green polymerization of vinyl acetate is carried out by a new method which consists in the use of clay called Maghnite-Na+ as an ecological catalyst, non-toxic, inexpensive and recyclable by simple filtration. X-ray diffraction (XRD) showed that Maghnite-Na+ is successfully obtained after cationic treatment (sodium) on raw Maghnite. It is an effective alternative to replace toxic catalysts such as benzoyl peroxide (BPO) and Azobisisobutyronitrile (AIBN) which are mostly used during the synthesis of polyvinyl acetate (PVAc) making the polymerization reaction less problematic for the environment. The synthesis reaction is less energetic by the use of recycled polyurethane as container for the reaction mixture and which is considered as a renewable material and a good thermal insulator which maintains the temperature at 0 °C for 6 h. The reaction in bulk is also preferred to avoid the use of a solvent and therefore to stay in the context of green chemistry. In these conditions, the structure of obtained polymer is established by Nuclear Magnetic Resonance Spectroscopy 1H NMR and 13C NMR. Infrared spectroscopy (FT-IR) is also used to confirm the structure of PVAc. Thermogravimetric analysis (TGA) showed that it is thermally stable and it starts to degrade from 330 °C while Differential Scanning calorimetry (DSC) shows that this polymer has a glass transition temperature (Tg  = 50 °C). The composition in PVAc/Maghnite-Na+ (7 wt% of catalyst) is the most tensile resistant with a force of 182 N and a maximum stress of 73.16 MPa, the most flexible (E  = 955 MPa) and the most ductile (εr  = 768%).

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3