XAF1 overexpression exacerbates diabetes by promoting pancreatic β-cell apoptosis

Author:

Nishimura Yuki,Iwashita MisakiORCID,Hayashi Masato,Shinjo Takanori,Watanabe Yukari,Zeze Tatsuro,Yamashita Akiko,Fukuda Takao,Sanui Terukazu,Sano Tomomi,Asano Tomoichiro,Nishimura Fusanori

Abstract

Abstract Aims Pancreatic β-cell apoptosis may be involved in the onset and progression of type 2 diabetes mellitus, although its mechanism remains unclear. We previously demonstrated that macrophage-derived interferon (IFN) β induced X-linked inhibitor of apoptosis–associated factor 1 (XAF1) expression in β-cells and accelerated β-cell apoptosis in vitro. Here, we explored the effects of XAF1 on β-cell function and progression of diabetes in vivo. Methods Pancreatic β-cell-selective XAF1 overexpressing (Xaf1 Tg) mice were generated. Xaf1 Tg mice and their wild-type (WT) littermates were fed either a normal diet or a 40% or 60% high-fat diet (HFD). The effects of β-cell XAF1 on β-cell apoptosis and exacerbation of diabetes were investigated. Results Palmitic acid induced IFNβ expression in macrophages, and HFD intake promoted macrophage infiltration in pancreatic islets, both of which cooperatively upregulated XAF1 expression in mouse islets. Furthermore, HFD-fed Xaf1 Tg mice demonstrated increased β-cell apoptosis, lowered insulin expression, and impaired glucose tolerance compared with WT mice fed the same diet. These effects were more pronounced in the 60%HFD group than in the 40%HFD group. Conclusions Pancreatic β-cell XAF1 expression was enhanced via HFD-induced, macrophage-derived IFNβ, which promoted β-cell apoptosis and led to a reduction in insulin secretion and progression of diabetes. To our knowledge, this is the first report to demonstrate an association between pancreatic β-cell XAF1 overexpression and exacerbation of diabetes, thus providing insight into the mechanism of β-cell mass reduction in diabetes.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Corporation

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3