Enhanced breast mass mammography classification approach based on pre-processing and hybridization of transfer learning models
Author:
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s00432-023-05249-1.pdf
Reference34 articles.
1. Agnes SA, Anitha J, Pandian SIA, Peter JD (2019) Classification of mammogram images using multiscale all convolutional neural network (MA-CNN). J Med Syst 44:1–9
2. Al-Najdawi N, Biltawi M, Tedmori S (2015) Mammogram image visual enhancement, mass segmentation and classification. Appl Soft Comput 35:175–185
3. Babu A, Jerome SA (2022) Mammogram image grade gauging of denoising filters; enhancement methods. In: 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), pp. 1–6. https://doi.org/10.1109/iceeict53079.2022.9768548
4. Bhateja V, Misra M, Urooj S (2019) Non-linear filters for mammogram enhancement
5. Boudouh SS, Bouakkaz M (2022) Breast cancer: Breast tumor detection using deep transfer learning techniques in mammogram images. In: 2022 International Conference on Computer Science and Software Engineering (CSASE), pp. 289–294. https://doi.org/10.1109/csase51777.2022.9759702
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of tomato seedling chilling injury based on chlorophyll fluorescence imaging and DBO-BiLSTM;Frontiers in Plant Science;2024-09-09
2. Advancing precision in breast cancer detection: a fusion of vision transformers and CNNs for calcification mammography classification;Applied Intelligence;2024-06-22
3. Advancing fire detection: two-stage deep learning with hybrid feature extraction using faster R-CNN approach;Signal, Image and Video Processing;2024-05-16
4. Breast Micro-Calcification Classification: Xception and DenseNet201 Feature Fusion in Mammography;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3