1. Azizi, A., Mouhib, A.: Sur le rang du 2-groupe de classes de $${\mathbb{Q}}(\sqrt{m},\sqrt{d})$$ où $$m=2$$ ou un premier $$p\equiv 1~(mod \; 4)$$. Trans. Am. Math. Soc. 353(7), 2741–2752 (2001)
2. Benjamin, E., Lemmermeyer, F., Snyder, C.: On the unit group of some multiquadratic number fields. Pac. J. Math. 230(1), 27–40 (2007)
3. Chan, S., Koymans, P., Milovic, D., Pagano, C.: On the negative Pell equation. Preprint at arXiv:1908.01752 [math.NT] (2019)
4. Cohn, H., Lagarias, J.C.: On the existence of fields governing the $$2$$-invariants of the classgroup of $${ Q}(\sqrt{dp})$$ as $$p$$ varies. Math. Comp. 41(164), 711–730 (1983)
5. Cohn, H., Lagarias, J. C.: Is there a density for the set of primes $$p$$ such that the class number of $${\bf Q}(\sqrt{-p})$$ is divisible by $$16$$? In: Topics in classical number theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. János Bolyai, vol. 34, pp. 257–280. North-Holland, Amsterdam (1984)