Abstract
AbstractWe prove that on a compact almost Hermitian 4-manifold the space of $${\bar{\partial }}$$
∂
¯
-harmonic (1, 1)-forms always has dimension $$h_{{\bar{\partial }}}^{1,1} = b_- +1$$
h
∂
¯
1
,
1
=
b
-
+
1
or $$b_-$$
b
-
, whilst the space of Bott–Chern harmonic (1, 1)-forms always has dimension $$h_{BC}^{1,1} = b_- +1$$
h
BC
1
,
1
=
b
-
+
1
. We also perform calculations of $$h^{2,1}_{BC}$$
h
BC
2
,
1
and $$h^{1,2}_{BC}$$
h
BC
1
,
2
on the Kodaira–Thurston manifold, thereby providing a full account of when $$h^{p,q}_{BC}$$
h
BC
p
,
q
is or is not invariant of the choice of almost Hermitian metrics. Finally, we introduce a decomposition of the space of $$L^2$$
L
2
functions on all torus bundles over $$S^1$$
S
1
, which has proven useful for solving linear PDEs, and we demonstrate its use in the calculation of $$h^{p,q}_{{\bar{\partial }}}$$
h
∂
¯
p
,
q
.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Barth, W., Hulek, K., Peters, C., van de Ven, A.: Compact Complex Surfaces. Springer, Berlin (2004)
2. Buchdahl, N.: On compact Kähler surfaces. Ann. Inst. Fourier Tome 49(1), 287–302 (1999)
3. Chen, H., Zhang, W.: Kodaira dimensions of almost complex manifolds I. arXiv:1808.00885 (2018)
4. Draghici, T., Li, T., Zhang, W.: Symplectic forms and cohomology decomposition of almost complex 4-manifolds. IMRN 1, 1–17 (2010)
5. Gauduchon, P.: Le théoremè de l’excentricité nulle. Comptes Rendus Ser. (Acad. Sci. Paris) A 285, 387–390 (1977)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献