Author:
Stefancsik Ray,Balhoff James P.,Balk Meghan A.,Ball Robyn L.,Bello Susan M.,Caron Anita R.,Chesler Elissa J.,de Souza Vinicius,Gehrke Sarah,Haendel Melissa,Harris Laura W.,Harris Nomi L.,Ibrahim Arwa,Koehler Sebastian,Matentzoglu Nicolas,McMurry Julie A.,Mungall Christopher J.,Munoz-Torres Monica C.,Putman Tim,Robinson Peter,Smedley Damian,Sollis Elliot,Thessen Anne E.,Vasilevsky Nicole,Walton David O.,Osumi-Sutherland David
Abstract
AbstractExisting phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.
Funder
National Human Genome Research Institute
NIH Office of the Director
National Institute on Drug Abuse
U.S. Department of Energy
EMBL´s European Bioinformatics Institute (EMBL-EBI)
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献