KC-GEE: knowledge-based conditioning for generative event extraction

Author:

Wu Tongtong,Shiri Fatemeh,Kang Jingqi,Qi Guilin,Haffari Gholamreza,Li Yuan-Fang

Abstract

AbstractEvent extraction is an important, but challenging task. Many existing techniques decompose it into event and argument detection/classification subtasks, which are complex structured prediction problems. Generation-based extraction techniques lessen the complexity of the problem formulation and are able to leverage the reasoning capabilities of large pretrained language models. However, they still suffer from poor zero-shot generalizability and are ineffective in handling long contexts such as documents. We propose a generative event extraction model, KC-GEE, that addresses these limitations. A key contribution of KC-GEE is a novel knowledge-based conditioning technique that injects the schema of candidate event types as the prefix into each layer of an encoder-decoder language model. This enables effective zero-shot learning and improves supervised learning. Our experiments on two benchmark datasets demonstrate the strong performance of our KC-GEE model. It achieves particularly strong results in the challenging document-level extraction task and in the zero-shot learning setting, outperforming state-of-the-art models by up to 5.4 absolute F1 points.

Funder

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference44 articles.

1. Li, Q., Peng, H., Li, J., Hei, Y., Sun, R., Sheng, J., Guo, S., Wang, L., Yu, P.S.: A survey on deep learning event extraction: Approaches and applications. TNNLS, 1–21 (2022)

2. Xu, R., Liu, T., Li, L., Chang, B.: Document-level event extraction via heterogeneous graph-based interaction model with a tracker. In: Proceedings of ACL, pp. 3533–3546 (2021)

3. Paolini, G., Athiwaratkun, B., Krone, J., Ma, J., Achille, A., Anubhai, R., Santos, C.N.d., Xiang, B., Soatto, S.: Structured prediction as translation between augmented natural languages. In: ICLR (2021)

4. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21(140), 1–67 (2020)

5. Li, S., Ji, H., Han, J.: Document-level event argument extraction by conditional generation. In: Proceedings of NAACL, pp. 894–908 (2021)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3