1. Brown, T.B., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020)
2. Cai, E., O’Connor, B.: A monte carlo language model pipeline for zero-shot sociopolitical event extraction (2023). CoRR, abs/2305.15051
3. Walker, C., Stephanie Strassel, J.M.K.M.: Ace 2005 multilingual training corpus LDC2006T06, p. 2006. Linguistic Data Consortium, Web Download. Philadelphia (2006)
4. Chung, H.W., et al.: Scaling instruction-finetuned language models (2022). CoRR, abs/2210.11416
5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019)