1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE 17(6), 734–749 (2005)
2. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inform. Sci. 178(1), 37–51 (2008)
3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI (1998)
4. Cacheda, F., Carneiro, V., Fernández, D., Formoso, V.: Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance recommender systems. TWEB 5(1), 2 (2011)
5. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press (2012)