Auxiliary signal-guided knowledge encoder-decoder for medical report generation
-
Published:2022-08-27
Issue:1
Volume:26
Page:253-270
-
ISSN:1386-145X
-
Container-title:World Wide Web
-
language:en
-
Short-container-title:World Wide Web
Author:
Li Mingjie,Liu Rui,Wang Fuyu,Chang Xiaojun,Liang Xiaodan
Abstract
AbstractMedical reports have significant clinical value to radiologists and specialists, especially during a pandemic like COVID. However, beyond the common difficulties faced in the natural image captioning, medical report generation specifically requires the model to describe a medical image with a fine-grained and semantic-coherence paragraph that should satisfy both medical commonsense and logic. Previous works generally extract the global image features and attempt to generate a paragraph that is similar to referenced reports; however, this approach has two limitations. Firstly, the regions of primary interest to radiologists are usually located in a small area of the global image, meaning that the remainder parts of the image could be considered as irrelevant noise in the training procedure. Secondly, there are many similar sentences used in each medical report to describe the normal regions of the image, which causes serious data bias. This deviation is likely to teach models to generate these inessential sentences on a regular basis. To address these problems, we propose an Auxiliary Signal-Guided Knowledge Encoder-Decoder (ASGK) to mimic radiologists’ working patterns. Specifically, the auxiliary patches are explored to expand the widely used visual patch features before fed to the Transformer encoder, while the external linguistic signals help the decoder better master prior knowledge during the pre-training process. Our approach performs well on common benchmarks, including CX-CHR, IU X-Ray, and COVID-19 CT Report dataset (COV-CTR), demonstrating combining auxiliary signals with transformer architecture can bring a significant improvement in terms of medical report generation. The experimental results confirm that auxiliary signals driven Transformer-based models are with solid capabilities to outperform previous approaches on both medical terminology classification and paragraph generation metrics.
Funder
University of Technology Sydney
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Reference49 articles.
1. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang, L.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR (2018) 2. Chang, X., Nie, F., Wang, S., Yang, Y., Zhou, X., Zhang, C.: Compound rank-k projections for bilinear analysis. IEEE Trans. Neural Networks Learn. Syst. 27(7), 1502–1513 (2016) 3. Chen, Z., Song, Y., Chang, T., Wan, X.: Generating radiology reports via memory-driven transformer. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020 (2020) 4. Demner-Fushman, D., Kohli, M.D., Rosenman, M.B., Shooshan, S.E., Rodriguez, L., Antani, S., Thoma, G.R., McDonald, C.J.: Preparing a collection of radiology examinations for distribution and retrieval. Journal of the American Medical Informatics Association 23(2), 304–310 (2016) 5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|