Multi-modal transformer architecture for medical image analysis and automated report generation

Author:

Raminedi SanthoshORCID,Shridevi S.ORCID,Won DaehanORCID

Abstract

AbstractMedical practitioners examine medical images, such as X-rays, write reports based on the findings, and provide conclusive statements. Manual interpretation of the results and report generation by examiners are time-consuming processes that lead to potential delays in diagnosis. We propose an automated report generation model for medical images leveraging an encoder–decoder architecture. Our model utilizes transformer architectures, including Vision Transformer (ViT) and its variants like Data Efficient Image Transformer (DEiT) and BERT pre-training image transformer (BEiT), as an encoder. These transformers are adapted for processing to extract and gain visual information from medical images. Reports are transformed into text embeddings, and the Generative Pre-trained Transformer (GPT2) model is used as a decoder to generate medical reports. Our model utilizes a cross-attention mechanism between the vision transformer and GPT2, which enables it to create detailed and coherent medical reports based on the visual information extracted by the encoder. In our model, we have extended the report generation with general knowledge, which is independent of the inputs and provides a comprehensive report in a broad sense. We conduct our experiments on the Indiana University X-ray dataset to demonstrate the effectiveness of our models. Generated medical reports from the model are evaluated using word overlap metrics such as Bleu scores, Rouge-L, retrieval augmentation answer correctness, and similarity metrics such as skip thought cs, greedy matching, vector extrema, and RAG answer similarity. Results show that our model is performing better than the recurrent models in terms of report generation, answer similarity, and word overlap metrics. By automating the report generation process and incorporating advanced transformer architectures and general knowledge, our approach has the potential to significantly improve the efficiency and accuracy of medical image analysis and report generation.

Funder

Vellore Institute of Technology, Chennai

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3