Forest multifunctionality is not resilient to intensive forestry

Author:

Pohjanmies TähtiORCID,Eyvindson Kyle,Triviño María,Bengtsson Jan,Mönkkönen Mikko

Abstract

AbstractThere is ample evidence that intensive management of ecosystems causes declines in biodiversity as well as in multiple ecosystem services, i.e., in multifunctionality. However, less is known about the permanence and reversibility of these responses. To gain insight into whether multifunctionality can be sustained under intensive management, we developed a framework building on the concept of resilience: a system’s ability to avoid displacement and to return or transform to a desired state. We applied it to test the ability of forest multifunctionality to persist during and recover from intensive management for timber production in a boreal forest. Using forest growth simulations and multiobjective optimization, we created alternative future paths where the forest was managed for maximal timber production, for forest multifunctionality, or first maximal timber production and then multifunctionality. We show that forest multifunctionality is substantially diminished under intensive forestry and recovers the slower, the longer intensive forestry has been continued. Intensive forestry thus not only reduces forest multifunctionality but hinders its recovery should management goals change, i.e., weakens its resilience. The results suggest a need to adjust ecosystem management according to long-term sustainability goals already today.

Funder

Koneen Säätiö

Academy of Finland

Finnish Ministry of Agriculture and Forestry

Natural Resources Institute Finland

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3