Application of the Global Uncertainty and Sensitivity Analysis to assess the importance of deadwood characteristics for forest biodiversity

Author:

Mazziotta AdrianoORCID,Kangas AnnikaORCID,De Pellegrin Llorente IreneORCID,Tikkanen Olli-PekkaORCID,Eyvindson KyleORCID

Abstract

AbstractData acquisition for sustainable forest management has focused on obtaining high quality information to estimate biomass. Improving the quality of non-timber sustainability indicators, like deadwood volume, has been a minor interest. To explore how inventory approaches could be improved, we applied a Global Uncertainty and Sensitivity Analysis (GUSA) to evaluate which factors propagate more errors in deadwood modelling and how better data collection can minimize them. The impact of uncertainty on deadwood characteristics (diameter, collapse ratio, decay class, tree species, and position) was explored under stakeholders´ preferences, management actions, and climate change scenarios. GUSA showed that removing the prediction error in deadwood tree species and diameter would alter the most the total uncertainty in deadwood volume. We found that assessment of high deadwood volume was less uncertain for the scenarios where small deadwood items were left decaying on the forest floor (BAU) and for high-end climate change scenario (RCP8.5) which resulted in lower deadwood accumulation in forest stands and therefore also in lower likelihood of erroneous estimates. Reduced uncertainty in tree species and diameter class will elevate the certainty of deadwood volume to a similar level achieved in living biomass estimation. Our uncertainty and sensitivity analysis was successful in ranking factors propagating errors in estimate of deadwood and identified a strategy to minimize uncertainty in predicting deadwood characteristics. The estimation of uncertainty in deadwood levels under the scenarios developed in our study can help decision makers to evaluate risk of decreasing deadwood value for biodiversity conservation and climate change mitigation.

Funder

Natural Resources Institute Finland (Luke), Finland

Kungl. Skogs- och Lantbruksakademiens

Academy of Finland

Natural Resources Institute Finland

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3