Fusion of open forest data and machine fieldbus data for performance analysis of forest machines

Author:

Melander LariORCID,Einola Kalle,Ritala RistoORCID

Abstract

Abstract Forest resource data is important in targeting the forestry operations, and it is in the hearth of the precision forestry concept. The forest resource data can be produced with many techniques, and the number of existing forest data sources has increased during the years. In addition to the forest resource data, other data describing the circumstances of the forest site, such as trafficability and weather conditions, are available. In Finland, a forest data platform gathers the data sources under a single service for easier implementation of the precision forestry applications. This data is useful in operations planning, but it also describes the conditions that prevail when the forest machine arrives to the forest site. This study proposes data fusion between fieldbus time series of the forest machine and the forest data. The fused dataset enables explorative statistical analysis for examining the relationship between the machine performance and the forest attributes and provides data for building predictive models between the two. The presented methods are applied into a dataset generated from a field test data. The results show that some fieldbus time series features are predictable from forest attributes with $$R^{2}$$R2 value over 0.80, and clustering methods help in interpreting the machine behavior in different environments. In addition, an idea for generating a new forest data source to the forest data platform based on the fusion is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3