Distributed temporal graph analytics with GRADOOP

Author:

Rost ChristopherORCID,Gomez KevinORCID,Täschner Matthias,Fritzsche Philip,Schons Lucas,Christ Lukas,Adameit Timo,Junghanns Martin,Rahm ErhardORCID

Abstract

AbstractTemporal property graphs are graphs whose structure and properties change over time. Temporal graph datasets tend to be large due to stored historical information, asking for scalable analysis capabilities. We give a complete overview of Gradoop, a graph dataflow system for scalable, distributed analytics of temporal property graphs which has been continuously developed since 2005. Its graph model TPGM allows bitemporal modeling not only of vertices and edges but also of graph collections. A declarative analytical language called GrALa allows analysts to flexibly define analytical graph workflows by composing different operators that support temporal graph analysis. Built on a distributed dataflow system, large temporal graphs can be processed on a shared-nothing cluster. We present the system architecture of Gradoop, its data model TPGM with composable temporal graph operators, like snapshot, difference, pattern matching, graph grouping and several implementation details. We evaluate the performance and scalability of selected operators and a composed workflow for synthetic and real-world temporal graphs with up to 283 M vertices and 1.8 B edges, and a graph lifetime of about 8 years with up to 20 M new edges per year. We also reflect on lessons learned from the Gradoop effort.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Reference84 articles.

1. Apache Accumulo, July 2020. https://accumulo.apache.org/

2. Apache HBase, July 2020. http://hbase.apache.org/

3. Gelly: Flink Graph API, July 2020. https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/gelly/

4. JanusGraph, July 2020. https://janusgraph.org/

5. OrientDB Community, July 2020. http://www.orientechnologies.com/orientdb/

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3