Quickening Data-Aware Conformance Checking through Temporal Algebras

Author:

Bergami Giacomo1ORCID,Appleby Samuel1ORCID,Morgan Graham1ORCID

Affiliation:

1. School of Computing, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE4 5TG, UK

Abstract

A temporal model describes processes as a sequence of observable events characterised by distinguishable actions in time. Conformance checking allows these models to determine whether any sequence of temporally ordered and fully-observable events complies with their prescriptions. The latter aspect leads to Explainable and Trustworthy AI, as we can immediately assess the flaws in the recorded behaviours while suggesting any possible way to amend the wrongdoings. Recent findings on conformance checking and temporal learning lead to an interest in temporal models beyond the usual business process management community, thus including other domain areas such as Cyber Security, Industry 4.0, and e-Health. As current technologies for accessing this are purely formal and not ready for the real world returning large data volumes, the need to improve existing conformance checking and temporal model mining algorithms to make Explainable and Trustworthy AI more efficient and competitive is increasingly pressing. To effectively meet such demands, this paper offers KnoBAB, a novel business process management system for efficient Conformance Checking computations performed on top of a customised relational model. This architecture was implemented from scratch after following common practices in the design of relational database management systems. After defining our proposed temporal algebra for temporal queries (xtLTLf), we show that this can express existing temporal languages over finite and non-empty traces such as LTLf. This paper also proposes a parallelisation strategy for such queries, thus reducing conformance checking into an embarrassingly parallel problem leading to super-linear speed up. This paper also presents how a single xtLTLf operator (or even entire sub-expressions) might be efficiently implemented via different algorithms, thus paving the way to future algorithmic improvements. Finally, our benchmarks highlight that our proposed implementation of xtLTLf (KnoBAB) outperforms state-of-the-art conformance checking software running on LTLf logic.

Publisher

MDPI AG

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards automating microservices orchestration through data-driven evolutionary architectures;Service Oriented Computing and Applications;2024-02-27

2. Streamlining Temporal Formal Verification over Columnar Databases;Information;2024-01-08

3. Specification Mining over Temporal Data;Computers;2023-09-14

4. Fast Synthetic Data-Aware Log Generation for Temporal Declarative Models;Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3