Fast, exact, and parallel-friendly outlier detection algorithms with proximity graph in metric spaces

Author:

Amagata DaichiORCID,Onizuka Makoto,Hara Takahiro

Abstract

AbstractIn many fields, e.g., data mining and machine learning, distance-based outlier detection (DOD) is widely employed to remove noises and find abnormal phenomena, because DOD is unsupervised, can be employed in any metric spaces, and does not have any assumptions of data distributions. Nowadays, data mining and machine learning applications face the challenge of dealing with large datasets, which requires efficient DOD algorithms. We address the DOD problem with two different definitions. Our new idea, which solves the problems, is to exploit an in-memory proximity graph. For each problem, we propose a new algorithm that exploits a proximity graph and analyze an appropriate type of proximity graph for the algorithm. Our empirical study using real datasets confirms that our DOD algorithms are significantly faster than state-of-the-art ones.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Reference56 articles.

1. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

3. http://corpus-texmex.irisa.fr/

4. https://github.com/dwyl/english-words

5. Aggarwal, C.C.: Outlier analysis. In: Data Mining, pp. 237–263 (2015)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outlier detection using iterative adaptive mini-minimum spanning tree generation with applications on medical data;Frontiers in Physiology;2023-10-13

2. Efficient Density-peaks Clustering Algorithms on Static and Dynamic Data in Euclidean Space;ACM Transactions on Knowledge Discovery from Data;2023-08-10

3. Fast Algorithm for Embedded Order Dependency Validation;35th International Conference on Scientific and Statistical Database Management;2023-07-10

4. Scalable and Accurate Density-Peaks Clustering on Fully Dynamic Data;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

5. Learned k-NN distance estimation;Proceedings of the 30th International Conference on Advances in Geographic Information Systems;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3