1. Daichi Amagata , Yusuke Arai , Sumio Fujita , and Takahiro Hara . 2022. Learned k-NN Distance Estimation. arXiv:2208.14210 ( 2022 ). Daichi Amagata, Yusuke Arai, Sumio Fujita, and Takahiro Hara. 2022. Learned k-NN Distance Estimation. arXiv:2208.14210 (2022).
2. Daichi Amagata and Takahiro Hara. 2021. Fast Density-Peaks Clustering: Multicore-based Parallelization Approach. In SIGMOD. 49--61. Daichi Amagata and Takahiro Hara. 2021. Fast Density-Peaks Clustering: Multicore-based Parallelization Approach. In SIGMOD. 49--61.
3. Daichi Amagata Makoto Onizuka and Takahiro Hara. 2021. Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach. In SIGMOD. 36--48. Daichi Amagata Makoto Onizuka and Takahiro Hara. 2021. Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach. In SIGMOD. 36--48.
4. Daichi Amagata , Makoto Onizuka , and Takahiro Hara . 2022. Fast , exact, and parallel-friendly outlier detection algorithms with proximity graph in metric spaces. The VLDB Journal ( 2022 ), 1--25. Daichi Amagata, Makoto Onizuka, and Takahiro Hara. 2022. Fast, exact, and parallel-friendly outlier detection algorithms with proximity graph in metric spaces. The VLDB Journal (2022), 1--25.
5. Pierre Baldi , Kyle Cranmer , Taylor Faucett , Peter Sadowski , and Daniel Whiteson . 2016. Parameterized machine learning for high-energy physics. arXiv preprint arXiv:1601.07913 ( 2016 ). Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel Whiteson. 2016. Parameterized machine learning for high-energy physics. arXiv preprint arXiv:1601.07913 (2016).