A design space for RDF data representations

Author:

Sagi TomerORCID,Lissandrini Matteo,Pedersen Torben Bach,Hose Katja

Abstract

AbstractRDF triplestores’ ability to store and query knowledge bases augmented with semantic annotations has attracted the attention of both research and industry. A multitude of systems offer varying data representation and indexing schemes. However, as recently shown for designing data structures, many design choices are biased by outdated considerations and may not result in the most efficient data representation for a given query workload. To overcome this limitation, we identify a novel three-dimensional design space. Within this design space, we map the trade-offs between different RDF data representations employed as part of an RDF triplestore and identify unexplored solutions. We complement the review with an empirical evaluation of ten standard SPARQL benchmarks to examine the prevalence of these access patterns in synthetic and real query workloads. We find some access patterns, to be both prevalent in the workloads and under-supported by existing triplestores. This shows the capabilities of our model to be used by RDF store designers to reason about different design choices and allow a (possibly artificially intelligent) designer to evaluate the fit between a given system design and a query workload.

Funder

Danmarks Frie Forskningsfond

H2020 Marie Sklodowska-Curie Actions

Aalborg Universitet

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Knowledge Graph Completion Based Upon Knowledge Graph Embedding;2024 9th International Conference on Computer and Communication Systems (ICCCS);2024-04-19

2. EASC: An exception-aware semantic compression framework for real-world knowledge graphs;Knowledge-Based Systems;2023-10

3. Knowledge Graphs Querying;ACM SIGMOD Record;2023-08-10

4. Scaling Large RDF Archives To Very Long Histories;2023 IEEE 17th International Conference on Semantic Computing (ICSC);2023-02

5. Extraction of Validating Shapes from Very Large Knowledge Graphs;Proceedings of the VLDB Endowment;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3