Efficient local locking for massively multithreaded in-memory hash-based operators

Author:

Romanous BasharORCID,Windh Skyler,Absalyamov Ildar,Budhkar Prerna,Halstead Robert,Najjar Walid,Tsotras Vassilis

Abstract

AbstractThe join and group-by aggregation are two memory intensive operators that are affecting the performance of relational databases. Hashing is a common approach used to implement both operators. Recent paradigm shifts in multi-core processor architectures have reinvigorated research into how the join and group-by aggregation operators can leverage these advances. However, the poor spatial locality of the hashing approach has hindered performance on multi-core processor architectures which rely on using large cache hierarchies for latency mitigation. Multithreaded architectures can better cope with poor spatial locality by masking memory latency with many outstanding requests. Nevertheless, the number of parallel threads, even in the most advanced multithreaded processors, such as UltraSPARC, is not enough to fully cover the main memory access latency. In this paper, we explore the hardware re-configurability of FPGAs to enable deeper execution pipelines that maintain hundreds (instead of tens) of outstanding memory requests across four FPGAs-drastically increasing concurrency and throughput. We present two end-to-end in-memory accelerators for the join and group-by aggregation operators using FPGAs. Both accelerators use massive multithreading to mask long memory delays of traversing linked-list data structures, while concurrently managing hundreds of thread states across four FPGAs locally. We explore how content addressable memories can be intermixed within our multithreaded designs to act as a synchronizing cache, which enforces locks and merges jobs together before they are written to memory. Throughput results for our hash-join operator accelerator show a speedup between 2$$\times $$ × and 3.4$$\times $$ × over the best multi-core approaches with comparable memory bandwidths on uniform and skewed datasets. The accelerator for the hash-based group-by aggregation operator demonstrates that leveraging CAMs achieves average speedup of 3.3$$\times $$ × with a best case of 9.4$$\times $$ × in terms of throughput over CPU implementations across five types of data distributions.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3