Author:
Zhao Xiaohong,Qin Rixia,Zhang Qilei,Yu Fei,Wang Qi,He Bo
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Oceanography
Reference32 articles.
1. Badrinarayanan, V., Kendall, A., and Cipolla, R., 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481–2495, DOI: https://doi.org/10.1109/tpami.2016.2644615.
2. Chaurasia, A., and Culurciello, E., 2017. Linknet: Exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing (VCIP). St. Petersburg, 1–4, DOI: https://doi.org/10.1109/vcip.2017.8305148.
3. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L., 2017a. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834–848, DOI: https://doi.org/10.1109/tpami.2017.2699184.
4. Chen, L. C., Papandreou, G., Schroff, F., and Adam, H., 2017b. Rethinking atrous convolution for semantic image segmentation. Computer Vision and Pattern Recognition, arXiv: 1706.05587.
5. Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 1251–1258.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献