Safeguarding human values: rethinking US law for generative AI’s societal impacts

Author:

Cheong InyoungORCID,Caliskan Aylin,Kohno Tadayoshi

Abstract

AbstractOur interdisciplinary study examines the effectiveness of US law in addressing the complex challenges posed by generative AI systems to fundamental human values, including physical and mental well-being, privacy, autonomy, diversity, and equity. Through the analysis of diverse hypothetical scenarios developed in collaboration with experts, we identified significant shortcomings and ambiguities within the existing legal protections. Constitutional and civil rights law currently struggles to hold AI companies responsible for AI-assisted discriminatory outputs. Moreover, even without considering the liability shield provided by Section 230, existing liability laws may not effectively remedy unintentional and intangible harms caused by AI systems. Demonstrating causal links for liability claims such as defamation or product liability proves exceptionally difficult due to the intricate and opaque nature of these systems. To effectively address these unique and evolving risks posed by generative AI, we propose a “Responsible AI Legal Framework” that adapts to recognize new threats and utilizes a multi-pronged approach. This framework would enshrine fundamental values in legal frameworks, establish comprehensive safety guidelines, and implement liability models tailored to the complexities of human-AI interactions. By proactively mitigating unforeseen harms like mental health impacts and privacy breaches, this framework aims to create a legal landscape capable of navigating the exciting yet precarious future brought forth by generative AI technologies.

Funder

National Institute of Standards and Technology

William and Flora Hewlett Foundation

Silicon Valley Community Foundation

Publisher

Springer Science and Business Media LLC

Reference214 articles.

1. Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., Arx, S., Bernstein, M.S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J.Q., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel, K., Goodman, N., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D.E., Hong, J., Hsu, K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Koh, P.W., Krass, M., Krishna, R., Kuditipudi, R., Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li, X.L., Li, X., Ma, T., Malik, A., Manning, C.D., Mirchandani, S., Mitchell, E., Munyikwa, Z., Nair, S., Narayan, A., Narayanan, D., Newman, B., Nie, A., Niebles, J.C., Nilforoshan, H., Nyarko, J., Ogut, G., Orr, L., Papadimitriou, I., Park, J.S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani, Y., Ruiz, C., Ryan, J., Ré, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K., Tamkin, A., Taori, R., Thomas, A.W., Tramèr, F., Wang, R.E., Wang, W., Wu, B., Wu, J., Wu, Y., Xie, S.M., Yasunaga, M., You, J., Zaharia, M., Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K., Liang, P.: On the Opportunities and Risks of Foundation Models (2022)

2. Wolfe, R., Yang, Y., Howe, B., Caliskan, A.: Contrastive language-vision AI models pretrained on web-scraped multimodal data exhibit sexual objectification bias. In: ACM Conference on Fairness, Accountability, and Transparency (2023)

3. Sheng, E., Chang, K.-W., Natarajan, P., Peng, N.: The woman worked as a babysitter: on biases in language generation. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3407–3412 (2019). https://doi.org/10.18653/v1/D19-1339 . https://aclanthology.org/D19-1339

4. Reuters: Australian mayor prepares world’s first defamation lawsuit over ChatGPT content. The Guardian (2023)

5. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y.J., Madotto, A., Fung, P.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023). https://doi.org/10.1145/3571730

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3