From ethical AI frameworks to tools: a review of approaches

Author:

Prem ErichORCID

Abstract

AbstractIn reaction to concerns about a broad range of potential ethical issues, dozens of proposals for addressing ethical aspects of artificial intelligence (AI) have been published. However, many of them are too abstract for being easily translated into concrete designs for AI systems. The various proposed ethical frameworks can be considered an instance of principlism that is similar to that found in medical ethics. Given their general nature, principles do not say how they should be applied in a particular context. Hence, a broad range of approaches, methods, and tools have been proposed for addressing ethical concerns of AI systems. This paper presents a systematic analysis of more than 100 frameworks, process models, and proposed remedies and tools for helping to make the necessary shift from principles to implementation, expanding on the work of Morley and colleagues. This analysis confirms a strong focus of proposed approaches on only a few ethical issues such as explicability, fairness, privacy, and accountability. These issues are often addressed with proposals for software and algorithms. Other, more general ethical issues are mainly addressed with conceptual frameworks, guidelines, or process models. This paper develops a structured list and definitions of approaches, presents a refined segmentation of the AI development process, and suggests areas that will require more attention from researchers and developers.

Funder

Universität Wien

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference140 articles.

1. a3i. The Trust-in-AI Framework. (n.d.). http://a3i.ai/trust-in-ai (no longer available online, quoted from [127]).

2. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., Wallach, H. A.: Reductions approach to fair classification. ArXiv: 1803.02453 [Cs]. (2018) Retrieved from http://arxiv.org/abs/1803.02453

3. AI Commons. (n.d.) Retrieved from AI commons website: https://aicommons.com/

4. AI Now Institute Algorithmic Accountability Policy Toolkit. (n.d.). Retrieved from https://ainowinstitute.org/aap-toolkit.pdf

5. AI-RFX Procuement Framework. (n.d.). Retrieved from https://ethical.institute/rfx.html

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3