Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments

Author:

Waudby Christopher A.ORCID,Ouvry Margaux,Davis Ben,Christodoulou JohnORCID

Abstract

AbstractNMR spectroscopy provides a powerful approach for the characterisation of chemical exchange and molecular interactions by analysis of series of experiments acquired over the course of a titration measurement. The appearance of NMR resonances undergoing chemical exchange depends on the frequency difference relative to the rate of exchange, and in the case of one-dimensional experiments chemical exchange regimes are well established and well known. However, two-dimensional experiments present additional complexity, as at least one additional frequency difference must be considered. Here we provide a systematic classification of chemical exchange regimes in two-dimensional NMR spectra. We highlight important differences between exchange in HSQC and HMQC experiments, that on a practical level result in more severe exchange broadening in HMQC spectra, but show that complementary alternatives to the HMQC are available in the form of HZQC and HDQC experiments. We present the longitudinal relaxation optimised SOFAST-H(Z/D)QC experiment for the simultaneous acquisition of sensitivity-enhanced HZQC and HDQC spectra, and the longitudinal and transverse relaxation optimised BEST-ZQ-TROSY for analysis of large molecular weight systems. We describe the application of these experiments to the characterisation of the interaction between the Hsp90 N-terminal domain and a small molecule ligand, and show that the independent analysis of HSQC, HMQC, HZQC and HDQC experiments provides improved confidence in the fitted dissociation constant and dissociation rate. Joint analysis of such data may provide improved sensitivity to detect and analyse more complex multi-state interaction mechanisms such as induced fit or conformational selection.

Funder

Wellcome Trust

Cancer Research UK

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Spectroscopy,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3