A modernized view of coherence pathways applied to magnetic resonance experiments in unstable, inhomogeneous fields

Author:

Beaton Alec A.1ORCID,Guinness Alexandria1ORCID,Franck John M.1ORCID

Affiliation:

1. Department of Chemistry, Syracuse University, Syracuse, New York 13210, USA

Abstract

This article presents a standardized alternative to the traditional phase cycling approach employed by the overwhelming majority of contemporary Nuclear Magnetic Resonance (NMR) research. On well-tested, stable NMR systems running well-tested pulse sequences in highly optimized, homogeneous magnetic fields, the hardware and/or software responsible for traditional phase cycling quickly isolate a meaningful subset of data by averaging and discarding between 3/4 and 127/128 of the digitized data. In contrast, the new domain colored coherence transfer (DCCT) approach enables the use of all the information acquired from all transients. This approach proves to be particularly useful where multiple coherence pathways are required, or for improving the signal when the magnetic fields are inhomogeneous and unstable. For example, the authors’ interest in the nanoscale heterogeneities of hydration dynamics demands increasingly sophisticated and automated measurements deploying Overhauser Dynamic Nuclear Polarization (ODNP) in low-field electromagnets, where phase cycling and signal averaging perform suboptimally. This article demonstrates the capabilities of DCCT on ODNP data and with a collection of algorithms that provide robust phasing, avoidance of baseline distortion, and the ability to realize relatively weak signals amid background noise through signal-averaged correlation alignment. The DCCT schema works by combining a multidimensional organization of phase cycled data with a specific methodology for visualizing the resulting complex-valued data. It could be extended to other forms of coherent spectroscopy seeking to analyze multiple coherence transfer pathways.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3