Love symmetry

Author:

Charalambous PanagiotisORCID,Dubovsky Sergei,Ivanov Mikhail M.

Abstract

Abstract Perturbations of massless fields in the Kerr-Newman black hole background enjoy a (“Love”) SL(2, ℝ) symmetry in the suitably defined near zone approximation. We present a detailed study of this symmetry and show how the intricate behavior of black hole responses in four and higher dimensions can be understood from the SL(2, ℝ) representation theory. In particular, static perturbations of four-dimensional black holes belong to highest weight SL(2, ℝ) representations. It is this highest weight properety that forces the static Love numbers to vanish. We find that the Love symmetry is tightly connected to the enhanced isometries of extremal black holes. This relation is simplest for extremal charged spherically symmetric (Reissner-Nordström) solutions, where the Love symmetry exactly reduces to the isometry of the near horizon AdS2 throat. For rotating (Kerr-Newman) black holes one is lead to consider an infinite-dimensional SL(2, ℝ) ⋉ $$ \hat{\textrm{U}}{(1)}_{\mathcal{V}} $$ U ̂ 1 V extension of the Love symmetry. It contains three physically distinct subalgebras: the Love algebra, the Starobinsky near zone algebra, and the near horizon algebra that becomes the Bardeen-Horowitz isometry in the extremal limit. We also discuss other aspects of the Love symmetry, such as the geometric meaning of its generators for spin weighted fields, connection to the no-hair theorems, non-renormalization of Love numbers, its relation to (non-extremal) Kerr/CFT correspondence and prospects of its existence in modified theories of gravity.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3