Abstract
Abstract
We study the consistency of the cubic couplings of a (partially-)massless spinning field to two scalars in (d + 1)-dimensional de Sitter space. Gauge invariance of observables with external (partially)-massless spinning fields translates into Ward-Takahashi identities on the boundary. Using the Mellin-Barnes representation for boundary correlators in momentum space, we give a systematic study of Ward-Takahashi identities for tree-level 3- and 4-point processes involving a single external (partially-)massless field of arbitrary integer spin-J. 3-point Ward-Takahashi identities constrain the mass of the scalar fields to which a (partially-)massless spin-J field can couple. 4-point Ward-Takahashi identities then constrain the corresponding cubic couplings. For massless spinning fields, we show that Weinberg’s flat space results carry over to (d+1)-dimensional de Sitter space: for spins J = 1, 2 gauge-invariance implies charge-conservation and the equivalence principle while, assuming locality, higher-spins J > 2 cannot couple consistently to scalar matter. This result also applies to anti-de Sitter space. For partially-massless fields, restricting for simplicity to those of depth-2, we show that there is no consistent coupling to scalar matter in local theories. Along the way we also give a detailed account of how contact amplitudes with and without derivatives are represented in the Mellin-Barnes representation. Various new explicit expressions for 3- and 4-point functions involving (partially-)massless fields and conformally coupled scalars in dS4 are given.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference81 articles.
1. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].
2. D. Simmons-Duffin, The Conformal Bootstrap, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 1–74, 2017, DOI [arXiv:1602.07982] [INSPIRE].
3. D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
4. M. Jacob and G.F. Chew, Strong-interaction physics. A lecture note volume, W.A. Benjamin, New York U.S.A. (1964).
5. Book review, “The analytic s-matrix”, R.J. Eden, P.V. Landshoff, D.L. Olive and J.C. Polkinghorne, C(Cambridge University Press, 1966. viii-287p. 75s.), Nucl. Phys. A 90 (1967) 707.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献