Abstract
Abstract
Massive fields can imprint unique oscillatory features on primordial correlation functions or inflationary correlators, which is dubbed the cosmological collider signal. In this work, we analytically investigate the effects of a time-dependent mass of a scalar field on inflationary correlators, extending previous numerical studies and implementing techniques developed in the cosmological bootstrap program. The time-dependent mass is in general induced by couplings to the slow-roll inflaton background, with particularly significant effects in the case of non-derivative couplings. By linearly approximating the time dependence, the mode function of the massive scalar is computed analytically, on which we derive analytic formulae for two-, three-, and four-point correlators with the tree-level exchange of the massive scalar. The obtained formulae are utilized to discuss the phenomenological impacts on the power spectrum and bispectrum, and it is found that the scaling behavior of the bispectrum in the squeezed configuration, i.e., the cosmological collider signal, is modified from a time-dependent Boltzmann suppression. By investigating the scaling behavior in detail, we are in principle able to determine the non-derivative couplings between the inflaton and the massive particle.
Publisher
Springer Science and Business Media LLC
Reference151 articles.
1. Boomerang collaboration, Cosmology from MAXIMA-1, BOOMERANG and COBE / DMR CMB observations, Phys. Rev. Lett. 86 (2001) 3475 [astro-ph/0007333] [INSPIRE].
2. WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].
3. Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].
4. A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
5. K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献