Analytic formulae for inflationary correlators with dynamical mass

Author:

Aoki ShuntaroORCID,Noumi ToshifumiORCID,Sano FumiyaORCID,Yamaguchi Masahide

Abstract

Abstract Massive fields can imprint unique oscillatory features on primordial correlation functions or inflationary correlators, which is dubbed the cosmological collider signal. In this work, we analytically investigate the effects of a time-dependent mass of a scalar field on inflationary correlators, extending previous numerical studies and implementing techniques developed in the cosmological bootstrap program. The time-dependent mass is in general induced by couplings to the slow-roll inflaton background, with particularly significant effects in the case of non-derivative couplings. By linearly approximating the time dependence, the mode function of the massive scalar is computed analytically, on which we derive analytic formulae for two-, three-, and four-point correlators with the tree-level exchange of the massive scalar. The obtained formulae are utilized to discuss the phenomenological impacts on the power spectrum and bispectrum, and it is found that the scaling behavior of the bispectrum in the squeezed configuration, i.e., the cosmological collider signal, is modified from a time-dependent Boltzmann suppression. By investigating the scaling behavior in detail, we are in principle able to determine the non-derivative couplings between the inflaton and the massive particle.

Publisher

Springer Science and Business Media LLC

Reference151 articles.

1. Boomerang collaboration, Cosmology from MAXIMA-1, BOOMERANG and COBE / DMR CMB observations, Phys. Rev. Lett. 86 (2001) 3475 [astro-ph/0007333] [INSPIRE].

2. WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].

3. Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

4. A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].

5. K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Searching for cosmological collider in the Planck CMB data;Journal of Cosmology and Astroparticle Physics;2024-09-01

2. Multifield stochastic dynamics in GUT hybrid inflation without monopole problem and with gravitational wave signatures of GUT Higgs representation;Physics Letters B;2024-08

3. An effective cosmological collider;Journal of High Energy Physics;2024-07-11

4. The cosmological collider in R 2 inflation;Journal of Cosmology and Astroparticle Physics;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3