Propagator identities, holographic conformal blocks, and higher-point AdS diagrams

Author:

Jepsen Christian Baadsgaard,Parikh SarthakORCID

Abstract

Abstract Conformal blocks are the fundamental, theory-independent building blocks in any CFT, so it is important to understand their holographic representation in the context of AdS/CFT. We describe how to systematically extract the holographic objects which compute higher-point global (scalar) conformal blocks in arbitrary spacetime dimensions, extending the result for the four-point block, known in the literature as a geodesic Witten diagram, to five- and six-point blocks. The main new tools which allow us to obtain such representations are various higher-point propagator identities, which can be interpreted as generalizations of the well-known flat space star-triangle identity, and which compute integrals over products of three bulk-to-bulk and/or bulk-to-boundary propagators in negatively curved spacetime. Using the holographic representation of the higher-point conformal blocks and higher-point propagator identities, we develop geodesic diagram techniques to obtain the explicit direct-channel conformal block decomposition of a broad class of higher-point AdS diagrams in a scalar effective bulk theory, with closed-form expressions for the decomposition coefficients. These methods require only certain elementary manipulations and no bulk integration, and furthermore provide quite trivially a simple algebraic origin of the logarithmic singularities of higher-point tree-level AdS diagrams. We also provide a more compact repackaging in terms of the spectral decomposition of the same diagrams, as well as an independent discussion on the closely related but computationally simpler framework over p-adics which admits comparable statements for all previously mentioned results.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3