A parametric study of an unbalanced Jeffcott rotor supported by a rolling-element bearing

Author:

Haslam Alexander H.ORCID,Schwingshackl Christoph W.,Rix Andrew I. J.

Abstract

AbstractRolling-element bearings are widely used in industrial rotating machines, and hence there is a strong need to accurately predict their influence on the response of such systems. However, this can be challenging due to an interaction between the dynamics of the rotor and the bearing nonlinearities, and it becomes difficult to provide a physical explanation for the nonlinear response. A novel approach, combining a Jeffcott rotor supported by a detailed bearing model with the generalised harmonic balance method, is presented, enabling an in-depth study of the complex rotor–stator interaction. This allows the quasi-periodic response of the rotor, due to variable compliance, to be captured, and the impact of clearance, ring and stator compliance, and centrifugal loading of the bearing on the response to be investigated. A strongly nonlinear response was observed due to the bearing, leading to large shifts in frequency as the excitation amplitude was increased, and the emergence of stable and unstable operating regions. The variable compliance effect generated sub-synchronous forcing, which led to sub-resonances when the ball pass frequency coincided with the frequency of one of the modes. Radial clearance in the bearing had by far the largest influence on the unbalance response, the self-excitation due to variable compliance, and the stability. Introducing outer ring compliance was found to slightly soften the system, and centrifugal loading on the bearing elements marginally increased the system’s region of instability, but neither of these effects had a significant impact on the response for the investigated bearing. When the bearing was mounted on a sufficiently compliant stator, the system was found to behave linearly.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3