Affiliation:
1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) of liquid rocket engines (LREs) has a significant effect on the dynamic response of the bearing–rotor system. To reveal the fault mechanism of CSLBBs, a tribo-dynamic model is proposed in this paper that considers the solid-lubricated traction, six-DOF motion of the ball and contact collisions between the ball and the cage. The modified traction model uses fan-shaped and arched sections to discretize the contact area to eliminate the meshing error. The newly developed fault model, called ‘geometrical-frictional defects’, can more realistically represent solid-lubrication coating defects. The results show that the frictional excitation can significantly increase bearing vibration by increasing the traction force on the raceway. The change in the amplitude of the bearing vibration and its derivative can be used as a reference to determine the depth of defects. The width of the defect can be diagnosed by monitoring the double-pulse time interval and spectrum of the bearing vibration signal. This research may provide some theoretical guidance for the design and condition monitoring of CSLBBs.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
the 2023 Key Laboratory Stabilization Foundation of China