Constraint-based adaptive robust tracking control of uncertain articulating crane guaranteeing desired dynamic control performance

Author:

Zhang Zheshuo,Zhang Bangji,Yin HuiORCID

Abstract

AbstractArticulating crane (AC), a widely used crane, plays an essential role in various industrial activities. Owing to its strong nonlinearity and uncertainty, its tracking control remains challenging, particularly for precise dynamic tracking control. This paper proposes an adaptive diffeomorphism-constraint-based control (ADCBC) for a nonlinear AC to robustly achieve trajectory tracking while guaranteeing desired dynamic control performance (DDCP), considering (possibly rapid and irregular) time-variant uncertainty with unknown bounds. A user-definable hard-limiting function was used to guarantee the DDCP, including the requirement for steady-state tracking error and dynamic convergence speed. The desired trajectories and DDCP were formulated as equality and inequality servo constraints, respectively. A diffeomorphism approach was adopted to incorporate inequality servo constraints into equality servo constraints, yielding new equality servo constraints. Thus, the control task was converted to enable the transformed AC to follow the new equality servo constraints and was completed by a constraint-based control (CBC) scheme, where an adaptive law was established for the estimation of online uncertainty bounds to compensate for uncertainty. No approximations or linearizations were invoked. The effectiveness and robustness of the proposed ADCBC were confirmed through rigorous proofs and simulation results. To the best of our knowledge, this is the first endeavor in tracking control while guaranteeing the DDCP for uncertain AC-like systems.

Funder

National Natural Science Foundation of China

State Key Laboratory of Traction Power

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3