Abstract
AbstractThis paper studies the intestinal frictions acting on a millimetre-scale self-propelled capsule (26 mm in length and 11 mm in diameter) for small bowel endoscopy by considering different capsule–intestine contact conditions under a wide range of capsule’s progression speeds. According to the experimental results, intestinal frictions vary from 7 mN to 4.5 N providing us with a guidance for designing the propelling mechanism of the controllable capsule endoscope. Our calculations show that the proposed vibro-impact mechanism can perform as a force magnifier generating a much larger propulsive force on the capsule than its original driving force. Therefore, the self-propelled capsule is capable of moving in the small intestine under a wide range of friction variation.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献