Neural-based formation control of uncertain multi-agent systems with actuator saturation

Author:

Fei YangORCID,Shi PengORCID,Lim Cheng-ChewORCID

Abstract

AbstractThe formation control problem for a group of first-order agents with model uncertainty and actuator saturation is investigated in this manuscript. An algorithm-and-observer-based formation controller is developed to ensure the semi-global boundedness of the formation tracking error with actuator saturation. First, a fully local-error-related cooperative weight tuning procedure is proposed for the adaptive uncertainty estimation of each agent. The effect of actuator saturation on both the cooperative adaptive estimation and the controller design part is then analysed and discussed. A three-layer neural-based observer is further constructed to achieve finite-time uncertainty approximation with actuator saturation. Besides, the reverse effect led by coupled and saturated control inputs is defined and a new control input distribution algorithm is presented to attenuate the potential oscillation in system states. Finally, comparative simulations based on a multiple omnidirectional robot system are conducted to illustrate the performance of the proposed formation controllers and the new algorithm.

Funder

Key-area Research and Development Program of Guangdong Province

Dongguan Innovative Research Team Program

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3